1. 异常建模:使用机器学习模型和异常检测来识别异常行为,比如用户从无法识别的IP地址访问网络,用户从与其角色无关的敏感文档存储库下载大量知识产权(IP),或者流量从组织没有业务往来的国家或地区的服务器发来。
2. 威胁建模:使用来自威胁情报源的数据和违反规则/策略的情况,寻找已知的恶意行为。这可以快速轻松地筛选出简单的恶意软件。
3. 访问异常建模:确定用户是否在访问不寻常的资产或不应该访问的资产。这需要提取用户角色、访问权限及/或身份证件方面的数据。
4. 身份风险剖析:根据人力资源数据、观察名单或外部风险指标,确定事件所涉及的用户风险级别。例如,最近没有被公海710考虑升职的员工也许更有可能对公海710怀恨在心,企图进行报复。
5. 数据分类:标记与事件有关的所有相关数据,如涉及的事件、网段、资产或账户,为安全团队提供上下文信息。
行为风险分析,通常需要收集大量数据,并基于该数据搭建训练模型,以查找异常行为和高风险行为。这种方法通常需要为正常的网络行为设定基准,通过机器学习等模型来检查网络活动并计算风险评分,根据风险评分查看异常情况,最终确定行为风险级别。这有助于减少误报并帮助安全团队确定风险优先级,从而将安全团队的工作量减少到更易于管理的水平。